
Information Only

(jlt) Sandia National Laboratories

date: 13 January 2009
to: Records

from: Ahmed E. Ismail
Haoran Deng
Je-Hun Jang
Thomas J. Wolery (LLNL)

subject: Verification ofFMT database and conversion to EQ3/6 format

Operated tor the U.S. Department of Energy by
Sandia Corporation

Cartsbad Programs Group

As part of the work for AP-140, Analysis Plan for EQ316 Analytical Studies (Wolery 2008), it
was necessary to convert the existing Pitzer parameter database used in FMT to a format suitable for
use with EQ3/6. In addition, it was decided to verify all Pitzer parameters in the database against the
original literature sources to ensure the accuracy of the database that would be converted to EQ3/6
format.

Database Conversion

The conversion of the database involved multiple steps.

1. The first step in the process was the construction of an Excel spreadsheet,
DBConversion050405_Rev3.xls. The spreadsheet takes for each species listed in the
FMT_050405.CHEMDAT database the species name (as listed in FMT) and its chemical
potential. The species were then divided into aqueous and solid species. Then, given the set
of strict basis species and auxiliary basis species used by EQ3/6, reactions were constructed
for the formation of each species from the appropriate set of basis species. Then, using the
chemical potential information available for each species, a log K was determined. (The
value of log K for each species is determined, whether or not is needed; where the value is
not appropriate for use, it has been so indicated in the Excel spreadsheet.) The final output of
this process is contained on the "Summary" spreadsheet, which was also exported as a CSV
file, DbConversion050405Summary.csv.

The conversion process included all of the required solid and aqueous species. For
consistency, the fictitious species Poslon and Neglon were included. In addition, data from
the literature (Shock et al. 1989), as reported in the data.ymp database included with EQ3/6,
was used to provide equilibrium data for 0 2(aq) and H2(aq), which were needed for handling
the species balances.

2. To complete the conversion process for species, a Perl script, read_db.pl, was run on the
DBConversion050405Summary.csv file. This script (a code Listing of which is shown in the
Appendix) performs a different set of operations for each group of species present in the
summary database:

a. For strict basis species, the script uses the formula of each species to determine the
charge of the species as well as how many atoms of each element are present.

WIPP:1.4.1.1 :PA:QA-L:548984

l of \Lt

Information Only

Records - 2- 13 January 2009 '

b. For auxiliary basis species and complexes, in addition to the information for strict
basis species, the stoichiometry of the aqueous dissociation reaction is reported. The
log K value determined is reported where available; otherwise "No Data" is reported.

c. For solid species, all of the information except charge (which is zero) is reported. An
additional blank, the ''VOPrTr'' header, is included but left equal to zero as it is not
needed for W1PP calculations.

The result of executing this script is a text file, species.dat, which can be entered into an
EQ3/6 database file. The accuracy of the conversion procedure was determined by visual
inspection of the input and output files.

3. A second script, chemdat_convert.pl, was written to extract the Pitzer parameters from the
FMT database. For each type of Pitzer parameter, the FMT_050405.CHEMDAT database
was read to locate all nonzero parameters. For each nonzero parameter, a data block for the
appropriate type of ion was constructed. Although EQ3/6 uses a temperature-dependent
model for its parameters, the WIPP geochemistry model assumes a constant temperature, and
thus the "a2," "a3," and "a4" entries for each parameter were set to zero. The output of this
script is a text file ,fmt_convert.dat, whose entries can be cut and pasted into an EQ3/6
database file. The accuracy of the conversion procedure was determined by visual inspection
of the input and output files.

The only conversion of parameters that was inserted into the script was the handling of the <lt
and a.2 parameters describing the interaction between 1: 1, 1 :2, and higher electrolytes. The
FMT database contains a field indicating " 1" for a 1:1 or 2:1 electrolyte ratio (for ion pairs in
which at least one ion has charge 1, and the other has charge 1 or 2), a "2" for a 2:2
electrolyte pair (both ions have charge 2), and a "3" for higher ratios (one or more ions has a
formal charge of 3 or larger). EQ3/6 uses the explicit values for these parameters; the field is
read by chemdat_convert.pl, and the appropriate values, which are given in Pitzer (1991), are
inserted into the output file.

4. To construct the output EQ3/6 database, dataO.wipp, an existing database (dataO.ymw) which
comes as part of the installation distribution of EQ3/6 was used as a template. The new
information was copied from the species.dat and fmt _ convert.dat files into the new file,
replacing any data in the original file. (Each section was copied individually, as the order in
which FMT and EQ3/6 database files are processed is different.) Following this, some minor
corrections and adjustments were made to the database, and source information for the
various parameters was entered manually. These changes are described in the following
section. The final output file created by this process is dataO. wipp.

Code listings for the scripts read_db.pl and chemdat_convert.pl are given in the Appendix. All of
the files created during the conversion process (read_ db.pl, chemdat _ convert.pl,
DBConversion050405_Rev3.x/s, DBConversion050405Summary.csv, species.dat,fmt_convert.dat,
SpeciesMap.dat, and dataO.wipp) will be placed in a ZIP archive file,fint_convert. zip, which will be
stored in library LIBEQ36, class CONVERT in the WIPP CMS repository. The file SpeciesMap.dat
was manually generated using the information provided in the CHEMDA T database.

The work was performed on a Mac Book Pro running OS X, version 10.4.11 , with Perl version
5.8.6. The scripts should be compatible with any Perl installation version 5.8 or higher. To run the
scripts on a Unix- or Linux-based system, change to the directory containing the Perl script and
execute the command "./read_db.pl" or."./chemdat_convert.pl" at a prompt. Note that the supporting

Information Only

Records - 3 - 21 October 2008

1 files (DBConversion050405Summary.csv for read_db.pl, and FMT_050405.CHEMDATand
SpeciesMap.dat for chemdat_convert.pl) must be included in the same directory in order for the
scripts to execute.

Database V erificatioo

All Pitzer parameters were verified with the original literature citations provided in the FMT
database. All necessary values for the WIPP geochemistry model- including interaction parameters
for the major brine component species, as well as interactions involving the Am(III), Th(IV), and
Np(V) actinide species which are used as the basis for determining the solubilities of all An(lll),
An(IV), and An(V) species present in the WIPP-were matched against the original literature
citations.

All values matched those found in the original literature sources. During the matching process,
however, several typographical errors were found in the original sources:

1. For parameters involving 2:1 ionic charge ratios taken from Pitzer (1991), there is an
error in the column defining the d parameter. According to the definition of d provided
in Harvie et al. (1984), the correct relationship between d and C should be

2512 }6 2512 16
- C; =-C instead ofthe listed relationship 2x-C; =-C. No values in the FMT

3 3 3 3
database required correction based on this problem.

2. In a report prepared for Sandia by Chopp in et al. (1999), a number of cation-anion pairs
were incorrectly listed as anion-anion pairs in Table 44 (that is, the anions in question are
listed as being paired with Cr instead ofNa+). However, comparison with the original
source literature from which the table is distilled shows the pairs correctly listed as
having Na + as a cation instead of cr as a second anion. Again, no values in the FMT
database required correction as a result of this problem.

3. In addition to the above issues, it was also observed that the database contained entries
for the U(IV) and Pu(IV) speciation models. However, such models are not currently
included in WIPP calculations, which are based on models for Am(ll), Th(IV), and
Np(V). Consequently, the uranium and plutonium species were removed from the
database following the completion of the conversion process.

4. During reviews of this document, it was discovered that there was an error in the
conversion process for handling the conversion of the neutral-cation-anion Pitzer
parameters. The row indicator was improperly incremented in the original version of the
file, leading to incorrect identification of the cation. This has been corrected in the code
listing shown below; because only two parameters were affected, and the mistake was
detected in the review process, the changes (MgOW to Na + and AmC03 + to W) were
made manually.

References for all of the Pitzer parameters were manually entered into the dataO.wipp file after
the verification process was complete.

Information Only

Records -4- 21 October 2008 '

REFERENCES

Choppin, G. R., A. H. Bond, M. Borkowski, M.G. Bronikowski, J. F. Chen, S. Lis, J. Mizera. 0.
Pokrovsky, N. A. Wall, Y.-X. Xia, and R. C. Moore. 2001. Waste Isolation Pilot Plant Actinide
Source Term Test Program: Solubility Studies and Development of Modeling Parameters.
SAND99-0943. Carlsbad, NM: Sandia National Laboratories.

Harvie, C. E., N. Meller, and J. H. Weare. 1984. The prediction of mineral solubilities in natural
waters: The Na-K-Mg-Ca-H-Cl-S04-0H-HC03-C03-C02-H20 system to high ionic strengths at
25°C. Geochim. et Cosmochim. Acta, 48,723.

Pitzer, K. S. 1991. Activity Coefficients in Electrolyte Solutions, 2"d ed. Boca Raton, FL: CRC Press.

Shock, E. L., H. C. Helgeson, and Sverjensky, D. A. 1989. Calculation of the thermodynamic and
transport properties of aqueous species at high pressurs and temperatures: Standard partial molal
properties of inorganic neutral species. Geochim. et Cosmochim. Acta, 53,2157.

Wolery, T. B. 2008. Analysis Plan for EQ3/6 Analytical Studies. Analysis Plan AP-140. Carlsbad,
NM: Sandia National Laboratories.

..

'

Information Only

Records

Appendix: Code Listings

read_db.pl

11!/usr/bin/perl

II A.. E. Ismail
I 25 Jul y 2008

8 read._db.pl

- 5-

II This script takes a CSV file containing thermodynamic information on
II the compounds to be used in the EQ3 /6 database. For each species in
II the file, the number of atoms of each e lement is determined,
II and the log K information is constructed. The results are returned
II in the form required for an EQ3/6 data file.
II
The output of this program is manuall y edited in conjunction with
the results of chemdat_convert .pl to create the overall file to be
processed by EQ3/6.

use stri ct;

my $spacer =
··---- - ---------------- ----------------------------- --------------\n";

my $item = "**** \n";
my $pad = • •;

open IN, '<DbConversion050405Summary.csv• or
die •coul d not open database file.\n' ;
open OUT, '>species.dat• or die •could not open output file.\n';

I Throw away strict basi s species header
<IN> for 1 .. 5 ;

print OUT $spacer;
print OUT ' basis speci es\n';

II Now parse basi s species
while (<IN> l (

print OUT $spacer;
my @entries = spli t/,/ ;
last unless ($entries [OJ / (A-Za-z0-9]/l;
print OUT $entries(O). "\n";

&get_charge($entries(l));
&parse_elern($entries(l));

II Throw away auxiliary basis header
<IN> for 1 .. 2;

print OUT •auxiliary basis species\n';

while (<IN> l {
print OUT $spacer;
my @ent r i es= spli t / , / ;
last unless ($entries (OJ =- / [A-Za-z0- 9) / l;
print £ OUT '%.24s %. 24s\n", $entries [0).$pad, $entries(!);

&get_charge($ent ries (l));
&parse_el ernl$entries(l]);
&reaction($entries(3));
&logK($entries[2Jl;

I Throw away complexes header
<IN> for 1 .. 2;

print OUT •complexes\n';

while (<IN> l {

21 October 2008

Information Only

Records - 6-

print OUT Sspacer;
my @entries= split/,/;
last unless (Sentries[OJ =- /[A-Za-z0- 9]/);
print£ OUT •t.24s t.24s\n", $entries(OJ . $pad, Sentri es(l) ;

&get_charge($entries(l]);
&parse_elem($entries(1]);
&reaction($entries(3]) ;
&logK($entries(2]);

Throw away solids header
<IN> for 1 .. 2;

print OUT •solids\n";

while (<IN>) {
print OUT $spacer;
my @entries= split/ , /;
last unless ($entries(OJ =- /(A-Za-z0-91/);
printf OUT •t.24s t.24s\n", $entries[0).$pad , $entries(l);

&get_ volume!);
&parse_elem($entries(1]) ;
&reaction($entries[3));
&logK($entries(2]);

print OUT $spacer;

close IN;
close OUT;

sub get_charge {

my sentry= $_(0];

Need to determine charge

if (substr($entry, 1) =- /[+-] /)
#There's a charge, find it.
my $charge = 1;
while () {

++$charge;
last unless (substr($entry, -$charge)

}

- 1) =- 1-1) {

/[+-]{$charge}/);

if (substr($entry,
printf OUT •
else {

charge t4.1f\n", -(--$charge);

print£ OUT "
}
else {
printf OUT •

printf OUT $item;

sub get_volume

charge %4 .1f \n", --$charge;

charge 0.0\n";

print OUT • VOPrTr 000 .000 cm**3/mol [source:
print OUT $item;

sub parse_elem
{

my $mult = 1.0;

First , make a copy of the string to be exandned.
my $work = $_(0);

21 October 2008 '

I \n";

Information Only

Records - 7-

t The next step is to eliminate strings that will not contribute
i to the e lement count.
my @elii!Llist = ("(5-)", "(6-)", "(aq)•, "(g)•, "+", •-•);
for my $item (@elim_listl {

$work=- s/\Q$i tem\E/ / g;

i Now build the list of elements present in the species.
my \elettLlist;
for my $j (0 .. length($work) - 1)

my $elem = substr $work, $j, 1;
next unless ($elem =- /IA-Zl/) ;
my $second = substr $work, Sj + 1, 1;
Selem = substr $work, $j, 2 if ($second=- /[a - z)/);
$elei!Llist{$elem) = 0 ;

Check if the whol e compound is surrounded by brackets.
If so, then the prefactor has to be taken into account.
if ($work =-/\[!) {

my @array = split (" \ Q\1\E", $work);
$mult = $array[O];
$array[1] =- s/\1//;
$work = $array[1];

t The next step is to break up the formula into pieces.
t The different pi eces are separated by periods.
my @pieces;
if ($work =- 1\ . I) {

@pieces split(/\./, $work);
else {
@pieces (Swork) ;

Now we work on the individual pieces.
for my $block (@pieces) {

my $factor = 1 . 0 ;

Check blocks for t he presence of prefactors.
if (substr($block, 0, 1) =- /[1-91 /l {

my @numbers= split{/[A- Za- z] / , $block);
$factor = $numbers[O) ;
$block = substr $block, length($factorl;
if ($ factor =- /\Ill {

}

my @terms = split(/\// , $factor);
$factor = $terms[OJ/$terms[1];

Now we need to analyze t he remaining chunks and check
for parentheses. We' ll begi n by splitting on left
parentheses.
my $full = ••;
if ($block =- 1\ (I) {

my @crumbs= split(/\(/, $block);
Now check the crumbs for right parentheses.
for my $1 (@crumbs) {

my $string;
1f ($1 =- /\)!) {

}

my @grains= split{ /\)/ , $1);
my $reps = substr $grai ns[1), 0, 1;
Sgrains [l) = substr $grains [l), 1;
push @grains, Sgrains [O l for (2 .. $reps);
$string join(••, @grains);
else (
$string = $1 ;

$full = $full .$string;
}
else {
$full = $block;

21 October 2008

Information Onlly

Records

for my $n (0 .. length($ful1) - 1) {
Not an element if it's a number or a lowercase
next if (substr($full, $n, 1) =- /[a - z0 -9)/);
t But it could be a two- letter element
my Selem;
if (substr($full, $n + 1, 1) =- /[a-z) /)

$elem = substr $full, $n, 2;
l e l se {

$elem = substr $full, $n, 1 ;
)

- 8-

if (substr($full, $n + length($elem), ll =- / [2 9)/l
my $count= substr($full, $n + length($elem), 1);
$elem_list($elem) += $factor * $count;

l elsif (substr($full, $n + length($eleml, 1) =- /1/)
I If the digit's a 1, it must be a two-digit number
my $count = substr($full , $n + length($elem), 2);
$elem_list{$elem) += $factor * $count;

) else {
$elemLlist{$elem} += $factor;

)

$elemLlist($_} *= $mult for (keys %elem_list);

t We can proceed without problems if there are no parentheses
in the remaining formula. Check for this first.

my $elems = scalar keys %elem_ list;

t OUtput r esults to file
print£ OUT • %1d element(s): \n", $elems;
my $el emLcount = 0;
print OUT • •;
for my $k (sort keys %el emLlist) {

print£ OUT "%7.4£ %- 14s", $elemL1ist{$k}, $k;
print OUT " \n • i f (++$elem_count% 3 == 0 && $elemLcount != $elems);

print OUT • \n • ;
print OUT $item;

sub reaction (

my $reaction= $_ [0) ;
my $ns = 0;
my (@names, @moles);

The reaction is split according to t he equal sign.
my @parts= split I = I, $reaction;

Start with reactants
my @reactants = split I \+I, $parts(OJ;
for my $i (@reactants) {

++$ns;
my @comps =split I I, $i;

$names [$ns]
$moles [$ns]

(@corrps
(@comps

2) ? $comps[l) : Scomps[O J ;
2) ? -$comps[O] : -1;

my @products= split I \+ / , $parts[1 };
for my $i (@products) {

++Sns;
my @comps = split I I , $i;

$names[$nsl
$moles[$nsJ

print£ OUT •
for my $i (1

print£ OUT •

(@comps 2) ? scomps[l)
(@comps == 21 ? $comps[OJ

$comps [O);
l ;

%2d species in aqueous dissociation reaction:\n", $ns;
$ns) {

%8.4£ %.2ls", $moles[$i], $names[$i).$pad;

21 October 2008 '

Information Only

Records

print OUT " \n " if (($i% 2

print OUT "\n";
print OUT • *\n";

sub logK (
my $logK = $_(0) ;
my Snd = "No_Data•;

print OUT
••••• logK grid (0-25-60-lOOC

if ($logK ! = "No_Data• && $logK
print£ OUT • %8s %8.4£

- 9 -

0) && ($i != $ns));

\@1.0132bar; 150- 200- 250- JOOC \@Psat - H20) :\n" ;
! = "99999") (
%8s %8s\n", Snd, $logK, $nd , $nd;

} else (
print£ OUT • %8s %8s %8s %8s\n', $nd, $nd, $nd, $nd;

print£ OUT • %8s %8s %8s %8s\n " , Snd, $nd, $nd, $nd;
print OUT •• Source: \n";

21 October 2008

Informatioon Only

Records

chemdat _convert. pi

I! /usr /bin/perl

I A. E. Ismail
I 25 July 2008

I chemdat_convert.pl

- 10 -

I This script takes a slightly modified version of the CHEMDAT FMT
I database and exports it to a format suitable for use in EQ3/6. The
only changes made to the CHEMDAT file are the insertion of headers
for the different parameter sections in the file, as well as
removing line breaks found in the middle of long data entries.

use strict;

my $spacer =
"+-- \n";

my $cspacer =
••--------------- ---\n";

my $item = •••••\n' ;
my $pad= • ';

my %orgs = ('Cit'=> 'Citrate•, 'Ac' => ' Acetate•, "Lac• =>"Lactate ',
•ox • => •oxalate');

my @alphal = (0.0, 2.0, 1.4, 1.4);
my @alpha2 = (0.0, 12.0, 12.0, 50.0);
my (@cations, @ani ons, @neutrals);

i Determine species, and count the number of each type
&read_species();
my $nc $ications;
my $na $iani ons;
my $nn $ineutral s;

I We also need variables to keep track of array positions
my ($block, $row, $col);

open IN, '<FMT_050405.txt• or die •could not open CHEMDAT file.\n";
open OUT, ">fmt_convert.dat• or die •could not open output file. \n";

print
print

OUT $spacer;
OUT

•ca combinations: beta(n) (cal and Cphi (ca) (optional: alpha(nl (cal) \n";

while (<IN>) {
(<IN>, last) if /cation- anion/i;

Handle cation- anion interactions
while (<IN> l {

last if /cation-cation/i;

my @array = split;
next if (1 @array) ;
next if ($array(l) == 0 && $array[2) == 0 &&

$array(3) == 0 && $array(4) == 0);

for my $org (keys %orgs) {
$array (5) s/$org/$orgs{$org}/;
$array[6) =- s/$org/$orgs{$org}/;

I Also change the handling of the negative charges from
CHEMDAT form to EQ3/6 form.
$array(6] s/ ===/\(6-\)/ ;
$array(6] s/== - /\(5 - \)/;
$array(6J s/=1--1;

21 October 2008 ·

---- -- ---·-----

Informationn Only

Records

my $id1 = $array(S).$pad;
my $id.2 = $array(6).$pad;

- 11-

f We will define the @beta array as {beta{O), beta{1), beta(2),
i cphi) to make life easier.
my @beta;
my @bstr {" beta(O)\n", • beta(1)\n", • beta(2) \n", • Cphi:\n");
$beta[$_- 1) =$array[$_) for 1 .. 4;

print OUT $spacer;

printf OUT "\.24s \ . 24s\n", $id1, $id2;
printf OUT • alpha(l) = %- . lf\n", $alpha1($array(0));
printf OUT • alpha(2) = %- .1f \n" , $alpha2[$array(0));
for (0 .. 3) {

print£ OUT $bstr[$_] ;
print£ OUT • a1 %.6g\n", $beta[$_) ;
print OUT • a2 0. \n ";
print OUT • a3 0. \n";
print OUT • a 4 0. \n" ;

print OUT • * Source: \n";

t Handle cation- cation interactions next
print OUT $spacer;
print OUT •cc• and aa• combinations: theta(cc') and theta(aa ')\n";
print OUT $cspacer;
print OUT"* cation-cation\n";

$row = 0;
while (<IN>)

last if /anion-anion/i ;
my @array = split;
next if (!@array);

++$row;
my $col = $row;
while () {

++$col;
my $term = shift @array;
last if ($term /(A-Za-z)/l;
next if ($term== 0 . 0);

&print_block("theta•, $cations($row], $cations[$col),

Handle anion- anion interactions next
print OUT $cspacer;
print OUT "* anion- anion\n";

$row = 0;
while (<IN>)

last if /cation-cation-anion/ i;
my @array = split;
next if (!@array);

++$row;
my $col = $row;
while () {

++$col;
my $term = shift @array;
last if ($term=- /(A-Za-z]/l ;
next if ($term == 0.0) ;

&print_block ("theta•, $anions[$row), $anions($col],

Now comes the tricky part: ternary parameters!
We need to keep track of block, row, and column!

$term);

$term);

21 October 2008

Information Only

Records

i Start wi th the cation- cation- anion parameters
print OUT $spacer;
print OUT •cation-cation-anion\n";

$block = 0;
while (<IN>)

last if /cation-anion-anion/i ;
my @array = split;
if <!@array) {

++$block;
Srow = $block;
next;

++$row;
$col ,. 0;
while (J {

++$col;
my $term = shift @array;
last if ($term /[A- Za- z]/);
next if ($term== 0.0) ;

- 12 -

&print_block("psi•, $cations[$block], Scations [Srow], $anions[$col],
$term);

I Next, tackle the cation-anion-anion parameters
print OUT $spacer;
print OUT •cation anion- anion\n";

$block = 0;
while (<IN> I

last if /neutra l - cation/i;
my @array = split;
if (!@array) {

++$block;
Srow = $block ;
next;

++Srow;
$col = 0;
while () {

++$col;
my $term = shift @array;
last if ($ term /[A- Za-z]/1;
next if ($term== 0.0);

&print_block("psi•, $anions[$block] , $anions($row], $cations[$col] ,
Sterm);

I Neutral binary parameters are next. They're a little simpler
I since there's only one block per section.

I Neutral - cation first
print OUT $spacer;
print OUT •nc and na combinations: lambda{nc) and lambda{naJ\n";
print OUT $cspacer;
print OUT •• neutral -cation\n";

$row = 0;
while (<IN>)

last if /neutral - anion/i;
my @array = split;
next if (!@array) ;

21 October 2008 '

Information Onlly

..
Records

++Srow;
Scol = 0;
while () (

++Scol;
my $term = shift @array;
last if ($term =- /(A-Za-z)/1 ;
next if ($term== 0 .0);

- 13 -

&print_block("lambda", $neutrals[$row], $cations($col],

Neutral -anion next
print OUT Scspacer;
print OUT "* neutral-anion\n";

$row = 0;
while (<IN>)

last if /neutral - cation- anion/i;
my @array = split;
next if (! @array) ;

++$row;
$col = 0;
while () {

++$col;
my $term = shift @array;
last if ($term /(A-Za-z) /);
next if ($term== 0 .0);

&print_block("lambda", $neutrals($row), Sanions($col],

f Time for neutral-cation-anion parameters now
print OUT $spacer;
print OUT •nca combinations: zeta(ncal\n";

$block = 0;
while (<IN>l

last if /cation map/;
my @array : split;
if (! @array) {

++$block;
next;

++Srow;
$col = 0;
while () (

last if (++$col > Snc);
my Sterm = shift @array;
last if ($term /(A-Za-z) /1;
next if ($term == 0.0) ;

Sterm);

$term);

&print_block("zeta• , $neutrals($block], $cations($row], $anions[$col],
$term);

close IN;
close OUT;

sub read_species

Open species map

open SPEC , "<SpeciesMap.dat• or die •could not open species map.\n";

Parse cations first

21 October 2008

Information Only

Records

<SPEC> for 1 .. 2;
my $nc = 0;
while (<SPEC>) (

my @line = split;
last if (!@line);

while (@line) {
$cations(++$nc)

t Parse anions next

<SPEC> for 1 .. 2;
my $na = 0 :
while (<SPEC>) {

my @line = split;
last if (!@line);

shift (@line);

while (@line) {
$anions (++$na) shift (@line);

Parse neutral species last

<SPEC> for 1 .. 2;
my $nn = 0 ;
while (<SPEC>) {

my @line = split;
last if (!@line);

while (@line) (
$neutrals(++$nn)

close SPEC ;

sub pri nt_block (

my $type
my $id1
my $i d2
my $i d3
my $term

$_ [0];
$_[1].$pad;
$_ [2] .$pad;
$_ (3] . $pad;
$_ [4];

print OUT $spacer;

shift (CHine);

- 14 -

printf
print
printf
print
print
print
print

OUT "\.24s \.24s \.24s\n", $id1, $id2, $ id3 ;
OUT • $type : \n • ;
OUT • al \ .6g\n ", $te rm;
OUT • a2 0 . \n • ;
OUT • a3 0 . \n • ;
OUT • a4 0. \n • ;
OUT •• Source:\n";

21 October 2008

